## Exercise MCQs

| Sr.<br>No. | Questions                                                                                             | A                                                                    | В                                                                              | <b>C</b>                                                | D                                                                  |
|------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|
| 1          | Isotopes are atoms of same element with different                                                     | √atomic<br>mass                                                      | atomic<br>number                                                               | number of protons                                       | number of electrons                                                |
| 2          | One of the isotopes of uranium is $^{238}_{92}\mathrm{U}$ . The number of neutrons in this isotope is | 92                                                                   | <b>√</b> 146                                                                   | 238                                                     | 330                                                                |
| 3          | Which among the following radiations has more penetrating power?                                      | a beta<br>particle                                                   | √a gamma<br>ray                                                                | an alpha<br>particle                                    | all have the<br>same<br>penetrating<br>ability                     |
| 4          | What happens to the atomic number of an element which emits one alpha particle?                       | increases by 1                                                       | stays the<br>same                                                              | √decreases<br>by 2                                      | decreases b                                                        |
| 5          | The half-life of a certain isotope is 1 day. What is the quantity of the isotope after 2 days?        | one-half                                                             | ✓ one-quarter                                                                  | one-eighth                                              | none of the                                                        |
| 6          | When Uranium (92 protons) ejects a beta particle, how many protons will be in the remaining nucleus?  | 89 protons                                                           | 90 protons                                                                     | 91 protons                                              | √93 protor                                                         |
| 7          | Release of energy by the Sun is due to                                                                | nuclear<br>fission                                                   | ✓ nuclear<br>fusion                                                            | burning of gases                                        | chemical<br>reaction                                               |
| 8          | When a heavy nucleus splits into two lighter nuclei, the process would                                | √release<br>nuclear<br>energy                                        | absorb<br>nuclear<br>energy                                                    | release<br>chemical<br>energy                           | absorb<br>chemical<br>energy                                       |
| 9          | The reason carbon-dating works is that                                                                | plants and<br>animals are<br>such strong<br>emitters of<br>carbon-14 | ✓ after a plant<br>or animal<br>dies, it stops<br>taking in fresh<br>carbon-14 | there is so much non- radioactive carbon dioxide in the | When plant<br>or animals<br>die. they<br>absorb fres<br>carbon -14 |

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798

Website: <a href="https://hiraacademy.online/">https://hiraacademy.online/</a>

Page 1 of 3

## Additional MCQs

| Proton heavier than electron  Atomic mass number can be found by relation  The temperature of sun is  The number of neutrons in tritium ( <sup>3</sup> <sub>1</sub> H) is  The number of neutrons in deuterium ( <sup>2</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in deuterium ( <sup>2</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in deuterium ( <sup>2</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>1</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The number of neutrons in rotium ( <sup>1</sup> <sub>2</sub> H) is  The nu |    |                                                          |                                       |                                     |                                       |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|---------------------------------|
| Atomic mass number can be found by relation   X - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Questions                                                | A                                     | B                                   | <b>C</b>                              | D                               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  | Proton heavier than electron                             | 1636 times                            | 1736 times                          | ✓1836 times                           | 1936 times                      |
| The temperature of sun is   20 kilo Kelvin   Kelvin   Kelvin   30 kilo Kelvin   tritium (\frac{3}{4}\) is   1   \( \sim 2 \)   3   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  |                                                          | Z - A                                 | A + N                               | ✓Z + N                                | Z + A                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3  | The temperature of sun is                                | 20 kilo Kelvin                        |                                     |                                       | 30 kilo Kelvin                  |
| The number of neutrons in protium ( <sup>2</sup> <sub>1</sub> H) is   1   2   3   √0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  |                                                          | 1                                     | √2                                  | 3                                     | 0                               |
| protium (¹H) is   1   2   3   √0   √0     n α decay decrease in atomic   2, 1   √2, 4   2, 2   Constant     safe limit of radiation exposure   3 rem   4 rem   √5 rem   6 rem     Patient should be exposed to X-rays   with limit     Half life of hydrogen ⁰H is   12 years   √12.3 years   30 years   30.3 years     Half life of cobalt ¹½Co is   12 years   √12.3 years   √30 years   30.3 years     Half life of carbon ¹½C is   3750 years   5370 years   √5730 years   7530 years     Half life of lead ¹½∃D is   8.07 hours   9.08 hours   √10.6 hours   16.9 hours     Half life of polonium ¹⁴Po is   12 years   12.3 years   130 years   √4.51 × 10°     Half life of uranium ²¾D is   √7.1 × 10°   years   years   years   years     Half life of polonium ²¾D is   √7.1 × 10°   years   years   years   years   years     Half life of plutonium ²¾D is   √7.1 × 10°   years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5  | The number of neutrons in                                | <b>√</b> 1                            | 2                                   | 3                                     | 0                               |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  |                                                          | 1                                     | 2                                   | 3                                     | 9 √0                            |
| S   per year   3 rem   4 rem   5 rem   6 rem     Patient should be exposed to X-rays with limit   1 to 2 rem   0.1 to 1.0 rem     Half life of hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7  | •                                                        | 2, 1                                  | <b>√</b> 2,4                        | 2,2                                   | Constant                        |
| with limit   0 to 1.0 rem   1 to 2 rem   0.1 to 1.0 rem   0.2 to 2.0 rem     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8  | •                                                        | 3 rem                                 | 4 rem                               | 5 rem                                 | 6 rem                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9  | ·                                                        | 0 to 1.0 rem                          | 1 to 2 rem                          | √<br>0.1 to 1.0 rem                   | 0.2 to 2.0 rem                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | Half life of hydrogen ${}^1_0	ext{H}$ is                 | 12 years                              | ✓12.3 years                         | 30 years                              | 30.3 years                      |
| 14Half life of iodine $\frac{131}{53}$ I is $\checkmark 8.07$ days $9.08$ days $10.6$ days $16.9$ days15Half life of lead $\frac{212}{52}$ Pb is $8.07$ hours $9.08$ hours $\checkmark 10.6$ hours $16.9$ hours16Half life of polonium $\frac{194}{4}$ Po is $0.1$ sec $0.3$ sec $0.5$ sec $\checkmark 0.7$ sec17Half life of polonium $\frac{210}{24}$ Po is $12$ years $12.3$ years $130$ years $\checkmark 138$ years18Half life of uranium $\frac{235}{92}$ U is $7.1 \times 10^8$ $3.0 \times 10^8$ $4.51 \times 10^9$ $3.5 \times 10^9$ 19Half life of uranium $\frac{236}{92}$ U is $7.1 \times 10^8$ $3.79 \times 10^5$ $\checkmark 4.51 \times 10^9$ $3.5 \times 10^6$ 20Half life of plutonium $\frac{23}{94}$ Pu is $7.1 \times 10^8$ $7.1 \times 10^8$ $7.1 \times 10^8$ $7.1 \times 10^8$ $7.1 \times 10^9$ $7.1 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 | Half life of cobalt $^{14}_{\ 6}$ Co is                  | 12 years                              | 12.3 years                          | ✓30 years                             | 30.3 years                      |
| 15Half life of lead $^{212}{12}$ Pb is8.07 hours9.08 hours $\checkmark 10.6$ hours16.9 hours16Half life of polonium $^{194}{194}$ Po is0.1 sec0.3 sec0.5 sec $\checkmark 0.7$ sec17Half life of polonium $^{210}{194}$ Po is12 years12.3 years130 years $\checkmark 138$ years18Half life of uranium $^{235}{92}$ U is $7.1 \times 10^8$ years $3.0 \times 10^8$ years $4.51 \times 10^9$ years $3.5 \times 10^9$ years19Half life of uranium $^{236}{92}$ U is $7.1 \times 10^8$ years $3.79 \times 10^5$ years $\checkmark 4.51 \times 10^9$ years $3.5 \times 10^6$ years20Half life of plutonium $^{236}{94}$ Pu is $0.85$ years $\checkmark 3.79 \times 10^5$ years $4.51 \times 10^9$ years $3.5 \times 10^6$ years21Half life of plutonium $^{236}{94}$ Pu is $0.85$ years $1.85$ years $\checkmark 2.85$ years $3.5 \times 10^6$ years22Beta particle is actuallyNeutrons $Positrons$ $\checkmark 1.85$ years $\checkmark 2.85$ years $3.5 \times 10^6$ years23Alpha particles areNeutrons $\checkmark 1.85$ years $\checkmark 1.85$ years $\checkmark 1.85$ years $\checkmark 1.85$ years $\checkmark 1.85$ years24During fission of 1 kg of uranium $^{235}{94}$ U energy is released $3.6 \times 10^{10}$ J OR $3.6 \times 10^9$ J OR $3.6 \times 10^{10}$ J OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | Half life of carbon ${}^{14}_{6}\mathrm{C}$ is           | 3750 years                            | 5370 years                          | ✓ 5730 years                          | 7530 years                      |
| 16Half life of polonium $^{194}{94}$ Po is $0.1 \text{ sec}$ $0.3 \text{ sec}$ $0.5 \text{ sec}$ $\checkmark 0.7 \text{ sec}$ 17Half life of polonium $^{210}{94}$ Po is $12 \text{ years}$ $12.3 \text{ years}$ $130 \text{ years}$ $\checkmark 138 \text{ years}$ 18Half life of uranium $^{235}{92}$ U is $\checkmark 7.1 \times 10^8$ years $3.0 \times 10^8$ years $4.51 \times 10^9$ years19Half life of uranium $^{236}{92}$ U is $7.1 \times 10^8$ years $3.79 \times 10^5$ years $\checkmark 4.51 \times 10^9$ years20Half life of plutonium $^{236}{94}$ Pu is $7.1 \times 10^8$ years $\checkmark 3.79 \times 10^5$ years $4.51 \times 10^9$ years21Half life of plutonium $^{236}{94}$ Pu is $0.85 \text{ years}$ $\checkmark 3.79 \times 10^5$ years $\checkmark 4.51 \times 10^9$ years22Beta particle is actuallyNeutronsPositrons $\checkmark 2.85 \text{ years}$ $3.5 \times 10^6$ years23Alpha particles areNeutrons $\checkmark 10^{10} \text{ J}$ $65 \times 10^8 \text{ J}$ $67 \times 10^{11} \text{ J}$ 24During fission of 1 kg of uranium $^{235}{92}$ U energy is released $\checkmark 67 \times 10^{11} \text{ J}$ $65 \times 10^8 \text{ J}$ $67 \times 10^{11} \text{ J}$ 25To burn 1 tone of coalenergy is released $36 \times 10^{11} \text{ J}$ $2.6 \times 10^{11} \text{ J}$ $3.6 \times 10^{19} \text{ J}$ 26Number of neutrons during emission of fission reaction are $2 \times 3$ $4 \times 5$ $5 \times 10^8 \text{ J}$ 27To diagnose a brain tumor, it is used $1 - 131$ $\checkmark Phosph32$ $Co - 60$ $C - 14$ 28The rays used during brain radiotherapy $4 \times 10^{10} \text{ J}$ $4 \times 10^{10} \text{ J}$ $4 \times 10^{10} \text{ J}$ 29 $4 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14 | Half life of iodine <sup>131</sup> <sub>53</sub> I is    | √8.07 days                            | 9.08 days                           | 10.6 days                             | 16.9 days                       |
| $ \begin{array}{c} 17 \\ \text{Half life of polonium} & 210 \\ 18 \\ \text{Half life of uranium} & 235 \\ 19 \\ \text{Half life of uranium} & 236 \\ 19 \\ \text{Half life of plutonium} & 236 \\ 19 \\ \text{Half life of plutonium} & 7.1 \times 10^8 \\ \text{years} & \text{years} & \text{years} & \text{years} \\ \text{years} & \text{years} & \text{years} & ye$                                                                                                     | 15 | Half life of lead <sup>212</sup> <sub>82</sub> Pb is     | 8.07 hours                            | 9.08 hours                          | ✓10.6 hours                           | 16.9 hours                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 | Half life of polonium <sup>194</sup> <sub>84</sub> Po is | 0.1 sec                               | 0.3 sec                             | 0.5 sec                               | ✓ 0.7 sec                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 | Half life of polonium <sup>210</sup> <sub>84</sub> Po is | 12 years                              | 12.3 years                          | 130 years                             | ✓138 years                      |
| 19Half life of uranium $^{236}_{92}$ U is $7.1 \times 10^8$<br>years $3.79 \times 10^5$<br>years $\sqrt{4.51 \times 10^9}$<br>years $3.5 \times 10^6$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 | Half life of uranium <sup>235</sup> <sub>92</sub> U is   |                                       |                                     |                                       |                                 |
| Half life of plutonium $^{2}$ $^{3}$ Pu is $^{2}$ years $^{2}$ 3.5 × 10 <sup>6</sup> years $^{2}$ years $^{2}$ years $^{2}$ 3.5 years $^{2}$ 2.85 years $^{2}$ 3.5 years $^{2}$ 2.85 years $^{2}$ 3.5 years $^{2}$ 2.86 years $^{2}$ 3.5 years $^{2}$ 2.87 years $^{2}$ 3.5 years $^{2}$ 3.6 years $^{2}$ 3.5 years $^{2}$ 3.6 years $^{2}$ 3.7 years $^{2}$ 3.8 years $^{2}$ 3.9 years $^{2}$ 3.8 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 | Half life of uranium <sup>236</sup> <sub>92</sub> U is   |                                       |                                     |                                       |                                 |
| 21Half life of plutonium $^{236}_{94}$ Pu is0.85 years1.85 years $\checkmark$ 2.85 years3.5 years22Beta particle is actuallyNeutronsPositrons $\checkmark$ ElectronProton23Alpha particles areNeutrons $\checkmark$ HeliumElectronProton24During fission of 1 kg of uranium $^{235}_{29}$ U energy is released $\checkmark$ 67 $\times$ 10 $^{10}$ J OR $^{65}_{6.7} \times 10^{11}$ J OR $^{36}_{6.7} \times 10^{11}$ J OR $^{36}_{1.7} \times 10^{11}$ J $^{36}_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 | Half life of plutonium $^{2}_{\ 94}^{42}$ Pu is          | $7.1 \times 10^{8}$                   | $\checkmark$ 3.79 × 10 <sup>5</sup> | $4.51 \times 10^9$                    | $3.5 \times 10^{6}$             |
| 22Beta particle is actuallyNeutronsPositrons $\checkmark$ ElectronProton23Alpha particles areNeutrons $\checkmark$ HeliumElectronProton24During fission of 1 kg uranium $^{235}_{92}$ U energy is releasedof OR $6.7 \times 10^{10}$ J OR $6.7 \times 10^{11}$ J $65 \times 10^8$ J $65 \times 10^8$ J $67 \times 10^{11}$ J OR $6.7 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 | Half life of plutonium <sup>236</sup> Pu is              | · · · · · · · · · · · · · · · · · · · |                                     | · · · · · · · · · · · · · · · · · · · | •                               |
| Alpha particles are  Neutrons  Neutrons  Helium  Electron  Proton  Proton  Proton  Alpha particles are  Neutrons  From $\frac{1}{1}$ to During fission of 1 kg of uranium $\frac{235}{92}$ U energy is released  To burn 1 tone of coalenergy is released  Number of neutrons during emission of fission reaction are  Number of neutrons during emission of fission reaction are  To diagnose a brain tumor, it is used  The rays used during brain radiotherapy $\frac{1}{1}$ to $\frac{1}{1}$ t                                                                                                                                                                                                                                                                                                                                                                                | 22 |                                                          | •                                     | Positrons                           | •                                     | •                               |
| During fission of 1 kg of uranium $^{235}_{92}$ U energy is released  To burn 1 tone of coalenergy is released  To burn 1 tone of coalenergy is released  Number of neutrons during emission of fission reaction are  To diagnose a brain tumor, it is used I - 131  The rays used during brain radiotherapy $\alpha - rays$ passing through a gas produce $\alpha - rays$ produce $\alpha - rays$ possing through a gas produce $\alpha - rays$ produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 |                                                          | Neutrons                              | ✓ Helium                            | Electron                              | Proton                          |
| To burn 1 tone of coalenergy is released                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 |                                                          | OR                                    | 65 × 10 <sup>8</sup> J              | 65 × 10 <sup>8</sup> J                | $67 \times 10^{11} \text{ J}$   |
| of fission reaction are $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 |                                                          |                                       | $2.6 \times 10^{11} \mathrm{J}$     | OR                                    | $2.6 \times 10^{10} \mathrm{J}$ |
| The rays used during brain radiotherapy $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26 | _                                                        | 2                                     | √3                                  |                                       | 5                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 | To diagnose a brain tumor, it is used                    | I – 131                               | ✓Phosph. –32                        | Co - 60                               | C — 14                          |
| produce Evaporation Vionization Excitation All of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28 | ,                                                        | α – rays                              | β – rays                            | √γ – rays                             | X – rays                        |
| The half-life of radium-226 is $4000 \text{ years}$ $2000 \text{ years}$ $\sqrt{1620 \text{ years}}$ 5730 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 |                                                          | Evaporation                           | ✓Ionization                         | Excitation                            | All of these                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | The half-life of radium-226 is                           | 4000 years                            | 2000 years                          | ✓1620 years                           | 5730 years                      |

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: <a href="https://hiraacademy.online/">https://hiraacademy.online/</a>

| 31 | Electron volt is also a unit of energy used in atomic and nearly physics 1eV = ?   | $1.6 \times 10^{19}  \text{J}$ | $\checkmark$ 1.6 × 10 <sup>-19</sup> J | $1.6 \times 10^{18} \text{ J}$ | $1.6 \times 10^{-18} \mathrm{J}$ |
|----|------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------|
| 32 | Which of the following option is the                                               | Alpha                          | ✓Beta                                  | Gemma                          | Positive ions                    |
|    | stream of high energy electrons?                                                   | particles                      | radiations                             | radiations                     | _                                |
| 33 | SI unit of radioactivity is                                                        | Rem                            | ✓Bq                                    | Bit                            | J                                |
| 34 | The process by which electron are emitted by hot metal surface is known            | Conduction                     | Thermionic<br>emission√                | Evaporation                    | boiling                          |
| 35 | Isotope of iodine-131 is used in treatment of                                      | Blood cancer                   | Bone cancer                            | Lungs cancer                   | Thyroid cancer                   |
| 36 | One of the isotope uranium $^{238}_{92}$ U. The number of neutrons in this isotope | 92                             | 146                                    | 238                            | 330                              |

Hira Science Academy For Educational Use Only

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798

Website: https://hiraacademy.online/

Page 3 of 3