Exercise MCQs

Sr. No.	Questions	A	В	C	D
1	An electric current in conductors is due to the flow of	positive ions	negative ions	positive charges	√ free electron
2	What is the voltage across a 6Ω resistor when $3A$ of current passes through it?	2 V	9 V	✓18 V	36 V
3	What happens to the intensity or the brightness of the lamps connected in series as more and more lamps are added?	Increases	√ decreases	remains the same	cannot b predicte
4	Why should household appliances be connected in parallel with the voltage source?	to increase the resistance of the circuit	to decrease the resistance of the circuit	√to provide each appliance the same voltage as the power source	to provide each appliance same currant as the power source
5	Electric potential and e.m.f	are the same terms	✓are the different terms	have different units	both (B) a (C)
6	When we double the voltage in a simple electric circuit, we double the	√current	power	resistance	both (a) a (b)
7	If we double both the current and the voltage in a circuit while keeping its resistance constant, the power	remains unchanged	halves	doubles	✓ Quadrup OR becor four time
8	What is the power rating of a lamp connected to a 12 V source when it carries 2.5 A?	4.8 W	14.5 W	✓30 W	60 W
9	The combined resistance of two identical resistors, connected in series is 8Ω . Their combined resistance in a parallel arrangement will be	2 Ω	√ 4Ω	8 Ω	12 Ω
	parallel arrangement will be				

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hiraacademy.online/

Additional MCQs

Sr.	Questions	Λ	D		D
No.	Questions	A	B		D
1	Formula of current is	I = Qt	$\checkmark I = \frac{Q}{t}$	$I = \frac{t}{Q}$	All of these
2	SI unit of current is	Coulomb	√Ampere	Volt	Farad
3	The unit of potential difference is	Joule	Coulomb	Farad	√Volt
4	Formula of e.m. f	$E = \frac{J}{Q}$	$E = \frac{W}{I}$	\checkmark E = $\frac{W}{Q}$	$E = \frac{W}{Q}$
5	The unit of e.m.f in SI system is equal to	J	Jm ⁻¹	JS ⁻¹	✓JC ⁻¹ OR V(volt)
6	An ideal volt meter has resistance	Very low	✓ Very large	Low	Zero
7	Specific resistance of copper is	$1.7 \times 10^{-8} \Omega\mathrm{m}$	\checkmark 1.69 × 10 ⁻⁸ Ω m	$100 \times 10^{-8} \Omega \text{m}$	3500×10^{-8} Ωm
8	Specific resistance of silver is	\checkmark 1.7 × 10 ⁻⁸ Ω m	$1.69 \times 10^{-8} \ \Omega \text{m}$	$100 \times 10^{-8} \Omega\mathrm{m}$	3500×10^{-8} Ωm
9	Specific resistance of aluminium is	\checkmark 2.75 × 10 ⁻⁸ Ωm	$5.25 \times 10^{-8} \Omega \text{m}$	$9.8 \times 10^{-8} \Omega \text{m}$	10.6×10^{-8} Ωm
10	Unit of resistance is	F(Farad)	C(Coulomb)	√Ω(Ohm)	V(Volt)
11	When resistances are connected in series, the current passing through them is	Different	Zero	✓Same	None
13	Which one is OHMIC in nature?	Thermister	Filament lamp	✓ Fixed resistor	Variable resistor
14	Mathematical form of joule's law	$W = I^2Rt$	\checkmark W = IR ² t	$W = I^2 R^2 t$	W = IRt
15	Which one is not true for power?	$P = I^2 R$	$P = \frac{QV}{t}$	✓P = IR	P = IV
16	The unit of electric power is	Ampere	Joule	√Watt	Volt
17	1kWh is equal to	3 MJ	✓3.6 MJ	2 MJ	2.6 MJ
18	SI unit of electric power is	1 W = Js	\checkmark 1 W = Js ⁻¹	$1 \text{ W} = J^{-1} s^{-1}$	$1 W = J^{-1}s$
19	Potential of neutral wire	✓0 V	1 V	100 V	220 V
20	An ideal ammeter has resistance	Very low	Very large	Low	√Zero
21	Two resistances $6~k\Omega$ and $12k\Omega$ are connected in parallel across a $6~V$ battery. The potential difference across $6~k\Omega$ resistance isvolts.	2	4	6√	12
22	A 100 Watt bulb is connected to 250 V supply the current flowing through the bulb is	0.4 A✓	2.5 A	4.8	14.5 A
23	The equivalent resistance of two resistor of $6k\Omega$ and $4k\Omega$ are connected in series across $10V$ abttery	√10 kΩ	2 kΩ	$\frac{12}{5}$ k Ω	$\frac{5}{12}$ k Ω

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798

Website: https://hiraacademy.online/

Page 2 of 2