Numerical Problems

Important formulas:

> Intensity Level of Sound

Intensity level =
$$10 \log \frac{I}{I_o}$$

- \triangleright Speed of wave $v = f\lambda$
- ightharpoonup Time period $T = \frac{1}{f}$
- Frequency $f = \frac{n}{t}$
- > Speed $v = \frac{d}{t}$
- \triangleright Distance S = vt

11.1 A normal conversation involves sound intensities of about $3.0 \times 10^{-6}~Wm^{-2}$. What is the decibel level for this intensity? What is the intensity of the sound for 100~dB? (ALP)

Given Data

Intensitiess of sound = $I = 3.0 \times 10^{-6} Wm^{-2}$ Int. of faintest sound = $I_o = 10^{-12} Wm^{-2}$ Sound level = $L - L_o = 100 dB$

To Find

Intensity level = $L - L_o = ?$ Intensity of sound = I = ?

Solution

By using formula of intensity level of sound

$$L - L_o = 10 \log \frac{I}{I_o}$$

$$L - L_o = 10 \log \frac{3.0 \times 10^{-6}}{10^{-12}}$$

$$L - L_o = 10 \log 3.0 \times 10^{-6+12}$$

$$L - L_o = 10 \log 3.0 \times 10^{6}$$

$$L - L_o = 10 \times 6.477$$

$$L - L_o = 64.77 dB$$

Now, again by using formula of intensity level of sound

$$L - L_o = 10 \log \frac{I}{I_o}$$

$$100 = 10 \log \frac{I}{10^{-12}}$$

$$\frac{100}{10} = \log \frac{I}{10^{-12}}$$

$$10 = \log \frac{I}{10^{-12}}$$

$$Antilog(10) = Antilog \left(\log \frac{I}{10^{-12}}\right)$$

$$1 \times 10^{10} = \frac{I}{10^{-12}}$$

$$1 \times 10^{10} \times 10^{-12} = I$$

$$1 \times 10^{10-12} = I$$

$$1 \times 10^{-2} = I$$

$$0.01 = I$$

$$I = 0.01 Wm^{-2}$$

11.2 If at Anarkali Bazar Lahore, intensity level of sound is $80 \ dB$, what will be the intensity of sound there? (ALP)

Given Data

Sound level = $L - L_0 = 80 dB$

Intensity of faintest sound = $I_o = 10^{-12} \ Wm^{-2}$ To Find

Intensity of sound = I = ?

Solution

By using formula of intensity level of sound

$$L - L_o = 10 \log \frac{I}{I_o}$$

$$80 = 10 \log \frac{I}{10^{-12}}$$

$$\frac{80}{10} = \log \frac{I}{10^{-12}}$$

$$8 = \log \frac{I}{10^{-12}}$$

$$Antilog(8) = Antilog \left(\log \frac{I}{10^{-12}}\right)$$

$$1 \times 10^8 = \frac{I}{10^{-12}}$$

$$1 \times 10^8 \times 10^{-12} = I$$

$$1 \times 10^{8-12} = I$$

$$1 \times 10^{-4} = I$$

$$I = 10^{-4} Wm^{-2}$$

11.3 At a particular temperature, the speed of sound in air is $330 \, ms^{-1}$. If the wavelength of a note is $5 \, cm$, calculate the frequency of the sound wave. Is this frequency in the audible range of the human ear? (ALP)

Given Data

Speed of sound =
$$v = 330 \text{ ms}^{-1}$$

Wavelength = $\lambda = 5 \text{ cm}$
 $\lambda = 5 \times 10^{-2} \text{m}$
 $\lambda = 0.05 \text{ m}$

To Find

$$Frequency = f = ?$$

Solution

By using formula of speed of wave

$$v = f\lambda$$

$$330 = (f)(0.05)$$

$$\frac{330}{0.05} = f$$

$$6600 = f$$

$$f = 6600 Hz$$

$$f = 6.6 \times 10^{3} Hz$$

Yes, the frequency lies in the audible range of human ear.

11.4 A doctor counts 72 heartbeats in 1 min. Calculate the frequency and period of the heartbeats. (ALP)

Given Data

Number of heartbeats =
$$n = 72$$

 $Time = t = 1 min$
 $t = 60 s$

To Find

$$requency = f = ?$$

 $Time\ period = T = ?$

Solution

For frequency, we use

$$f = \frac{n}{t}$$

$$f = \frac{72}{60}$$
$$f = 1.2 Hz$$

For time period, we use

$$T = \frac{1}{f}$$

$$T = \frac{1}{1.2}$$

$$T = 0.833 \text{ s}$$

11.5 A marine survey ship sends a sound wave straight to the seabed. It receives an echo 1.5 s later. The speed of sound in seawater is $1500\ ms^{-1}$. Find the depth of the sea at this position.

Given Data

Time taken =
$$t = 1.5 s$$

 $Speed = v = 1500 ms^{-1}$

To Find

Depth of seabed
$$= h = ?$$

Solution

By using formula of distance

$$S = vt$$

 $S = (1500)(1.5)$
 $S = 2250 m$

The echo distance must be half, so

$$h = \frac{S}{2}$$

$$h = \frac{2250}{2}$$

$$h = 1150 \text{ m}$$

11. 6 A student clapped his hands near a cliff and heard the echo after 5 s. What is the distance of the cliff from the student if the speed of the sound is taken as $346 \ ms^{-1}$? (ALP)

Given Data

Time taken =
$$t = 5s$$

 $Speed = v = 346 \text{ ms}^{-1}$

To Find

Distance of cliff
$$= h = 3$$

Solution

By using formula of distance

$$S = vt$$

 $S = (346)(5)$
 $S = 1730 m$

The echo distance must be half, so

$$h = \frac{S}{2}$$

$$h = \frac{1730}{2}$$

$$h = 865 \, m$$

11.7 A ship sends out ultrasound that returns from the seabed and is detected after 3.42 s. If the speed of ultrasound through seawater is $1531\ ms^{-1}$, what is the distance of the seabed from the ship? Given Data

Time taken =
$$t = 3.42 s$$

 $Speed = v = 1531 ms^{-1}$

To Find

Distance of seabed = h = ?

Solution

By using formula of distance

$$S = vt$$

 $S = (1531)(3.42)$
 $S = 5236.02 m$

The echo distance must be half, so

$$h = \frac{S}{2}$$

$$h = \frac{5236.02}{2}$$

$$h = 2618.01 m$$

11.8 The highest frequency sound humans can hear is about 20,000~Hz. What is the wavelength of sound in air at this frequency at a temperature of 20°C ? What is the wavelength of the lowest sounds we can hear of about 20~Hz? Assume the speed of sound in air at 20 OC is $343~ms^{-1}$.

Given Data

Highest frequency =
$$f_1$$
 = 20000 Hz
Lowest frequency = f_2 = 20 Hz
Speed of sound = v = 343 ms⁻¹

To Find

Wavelength at
$$f_1 = \lambda_1 = ?$$

Wavelength at $f_2 = \lambda_2 = ?$

Solution

By using formula of speed of wave

$$v = f_1 \lambda_1$$

$$343 = (20000)(\lambda_1)$$

$$\frac{343}{20000} = \lambda_1$$

$$0.01715 = \lambda_1$$

$$\lambda_1 = 0.01715 m$$

$$\lambda_1 = 1.715 \times 10^{-2} m$$

Now again by using formula of speed of wave

$$v = f_2 \lambda_2$$

$$343 = (20)(\lambda_2)$$

$$\frac{343}{20} = \lambda_2$$

$$17.15 = \lambda_2$$

$$\lambda_2 = 17.15 m$$

$$\lambda_2 = 1.715 \times 10^1 m$$

11.9 A sound wave has a frequency of $2 \, kHz$ and wavelength $35 \, cm$. How long will it take to travel $1.5 \, km$? (ALP)

Given Data

Frequency =
$$f = 2 \text{ kHz}$$

Frequency = $f = 2 \times 10^3 \text{ Hz}$
Wavelength = $\lambda = 35 \text{ cm}$
 $\lambda = 35 \times 10^{-2} \text{m}$
 $\lambda = 0.35 \text{ m}$
Distance = $S = 1.5 \text{ km}$
 $S = 1.5 \times 10^3 \text{ m}$

To Find

$$Time = t = ?$$

Solution

First, we find speed of wave

$$v = f\lambda$$

 $v = (2 \times 10^3)(0.35)$
 $v = 700 \text{ ms}^{-1}$

Now by using formula of distance

$$S = vt$$

$$1.5 \times 10^{3} = (700)(t)$$

$$\frac{1.5 \times 10^{3}}{700} = t$$

$$2.14 = t$$

$$t = 2.14 s$$

Examples

11. 1 Calculate the intensity levels of the (a) faintest audible sound (b) rustling of leaves. (ALP) Solution

(a) Intensity level of faintest audible sound can be calculated by substituting $I = I_o = 10^{-12} \ Wm^{-2}$. Therefore, by using formula of intensity level of sound

$$L - L_o = 10 \log \frac{I}{I_o}$$

$$L - L_o = 10 \log \frac{I_o}{I_o}$$

$$L - L_o = 10 \log 1$$

$$L - L_o = (10)(0)$$

$$L - L_o = 0 dB$$

(b) As intensity of the rustle of leave is $I=10^{-11}\ Wm^{-2}$. Therefore, by using formula of intensity level of sound

$$L - L_o = 10 \log \frac{I}{I_o}$$

$$L - L_o = 10 \log \frac{10^{-11}}{10^{-12}}$$

$$L - L_o = 10 \log 10^{-11+12}$$

$$L - L_o = 10 \log 10$$

$$L - L_o = (10)(1)$$

$$L - L_o = 10 dB$$

11.2 Calculate the frequency of a sound wave of speed $340\ ms^{-1}$ and wavelength 0.5 m. (ALP) Given Data

Speed of sound =
$$v = 340 \text{ ms}^{-1}$$

Wavelength = $\lambda = 0.5 \text{ m}$

To Find

$$Frequency = f = ?$$

Solution

By using formula of speed of wave

$$v = f\lambda$$

$$340 = (f)(0.5)$$

$$\frac{340}{0.5} = f$$

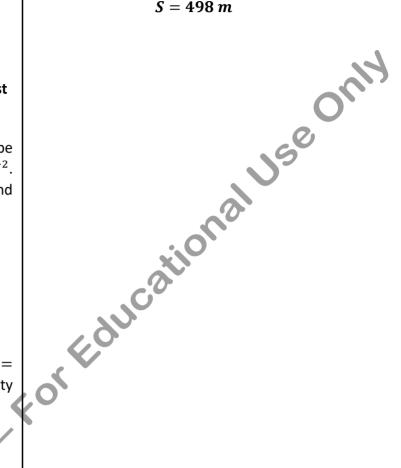
$$680 = f$$

$$f = 680 \text{ Hz}$$

11. 3 Flash of lightning is seen 1. 5 seconds earlier than the thunder. How far away is the cloud in which the flash has occurred? (speed of sound = $332 \ ms^{-1}$).

Given Data

Time taken = t = 1.5 sSpeed = $v = 332 ms^{-1}$


To Find

Distance = S = ?

Solution

By using formula of distance

$$S = vt$$

 $S = (332)(1.5)$
 $S = 498 m$

