Exercise MCQs

1	Which of the following is an example of simple harmonic motion? If the mass of the bob of a pendulum is increased by a factor of 3, the period of the pendulum's motion will. Which of the following devices can be used to produce both transverse and Longitudinal waves? Waves transfer Which of the following is a method of energy transfer? In a vacuum, all electromagnetic waves have the same carge ripple tank with a vibrator working at a frequency of 30 Hz produces 25 complete waves in a	✓ the motion of simple pendulum be increased by a factor of 2 a string ✓ energy Conduction ✓ speed	the motion of ceiling fan remain the same a ripple tank frequency Radiation frequency	the spinning of the Earth on its axis be decreased by a factor of 2 ✓ a helical spring (slinky) wavelength wave motion amplitude	the spinning of the Earth on its axis be decreased by a factor of the Earth on its axis be decreased by a factor of the Earth of these Wavelength
2 is so o v v s so o o o o o o o o o o o o	s increased by a factor of 3, the period of the pendulum's motion will Which of the following devices can be used to produce both transverse and Longitudinal waves? Waves transfer Which of the following is a method of energy transfer? In a vacuum, all electromagnetic waves have the same Large ripple tank with a vibrator working at a frequency of 30 Hz	by a factor of 2 a string ✓ energy Conduction	same a ripple tank frequency Radiation	by a factor of 2 ✓ a helical spring (slinky) wavelength wave motion	by a factor o 4 a tuning fork velocity ✓ all of these
3 b a a 4 V o o o o o o o o o o o o o o o o o o	waves have the same arge ripple tank with a vibrator working at a frequency of 30 Hz	✓ energy Conduction	frequency Radiation	spring (slinky) wavelength wave motion	velocity ✓all of these
5 oo lii w w 7 p d	Which of the following is a method of energy transfer? In a vacuum, all electromagnetic waves have the same Large ripple tank with a vibrator working at a frequency of 30 Hz	Conduction	Radiation	wave motion	✓ all of thes
6 Ir w 1 L w 7 p d	of energy transfer? n a vacuum, all electromagnetic waves have the same arge ripple tank with a vibrator working at a frequency of 30 Hz			.0	
6 w L w 7 p d	vaves have the same arge ripple tank with a vibrator working at a frequency of 30 Hz	√speed	frequency	amplitude	Wavelength
7 p	working at a frequency of 30 Hz		-7		<u> </u>
	distance of 50 cm. The velocity of he wave is	53 cms ⁻¹	√60cms ⁻¹	750cms ⁻¹	1500 cms ⁻
8 c	Which of the following characteristics of a wave is ndependent of the others?	Speed	Frequency	√amplitude	Wavelength
9 T	The relation between v , f and λ of a wave is	v f = λ	√f λ = v	v λ = f	v = λ / f
	wave is				

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hiraacademy.online/

Mobile: 03338114798

Page ${f 1}$ of ${f 2}$

Additional MCQs

Sr. No.	Questions	A	В	С	D
1	The length of simple pendulum is doubled its time period will be	√√2 T	$\frac{T}{\sqrt{2}}$	2T	$\frac{T}{2}$
2	In simple pendulum motion restoring force is provided by	Air resistance	Tension in string	Inertia	✓ Weight of body
3	When did Christian Huygens invent the pendulum clock?	1856	√ 1656	1756	1956
4	The example of shock absorbers of the vehicle is	SHM	Vibratory motion	✓ Damped motion	linear motion
5	Which of these waves consist of compressions or rarefaction?	Radio waves	✓ Sound waves	Television waves	X-Rays
6	If the frequency of wave is $4\ Hz$ and wavelength is $0.4\ m$, then speed will be	16 ms ⁻¹	16 m	√1.6 ms ⁻¹	1.6 m
7	Frequency is equal to	$f = \frac{1}{g}$	$f = 2\pi \sqrt{\frac{l}{g}}$	f = kx	$\checkmark f = \frac{1}{T}$
8	The expression of Hook's law	✓ F = -kx	$k = \frac{-2F}{x}$	$F = \frac{-1}{kx}$	$F = -\frac{x}{k}$
9	Time period of simple pendulum is given by	\checkmark T = $2\pi\sqrt{\frac{1}{g}}$	$T = 2\pi \sqrt{\frac{m}{g}}$	$T=2\pi\sqrt{\frac{m}{k}}$	$T = 2\pi \sqrt{\frac{g}{l}}$
10	Time period of a mass spring system is given by	$T = 2\pi \sqrt{\frac{k}{m}}$	$T = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	$T = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$	$\checkmark T = 2\pi \sqrt{\frac{m}{k}}$
11	K.E. of mass spring system is maximum at	Extreme position	✓ Mean position	Both A and B	None of these
13	If $l = 1 \text{ m}$ then the time period of simple pendulum is	2.11 sec	1.89 sec	√1.99 sec	1.88 sec
14	Bending of waves around corners is called OR The bending of wave around obstacles or sharp edges, this phenomenon is called	Reflection	Refraction	✓Diffraction	Interference
15	In which state of matter longitudinal waves move faster	Gas	Liquid	✓Solid	Plasma
16	Which are the radio waves OR Radio waves are	Electric waves	✓ Electromag netic waves	Longitudinal waves	All of these
17	In SHM, velocity at extreme position is	Maximum	Minimum	√Zero	None of these
	The product of time period and frequency is	V	√1	0	λ
18	SI unit of frequency	√Hz	A	S	С
19	SI unit of amplitude	S	cm	√m	None of these
20	The main types of waves are	1	√2	3	4
21	When water waves enter the region of shallow water their wavelength	Increase	✓ Decrease	Become zero	Remain same
22	Earth-quake produces	Seismic waves√	Crest waves	Wave fronts	Sound waves

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hiraacademy.online/

Mobile: 03338114798 Page **2** of **2**