Unit 5 Sets and Functions					
1	A collection of well-defined objects is called	Subset	Power set	√Set	None of these
2	A set $Q = \left\{ \frac{a}{b} a, b \in Z \land b \neq 0 \right\}$ is called a set of	Whole number	Natural number	Irrational number	√ Rational number
3	The different number of ways to describe a set	1	2	√3	4
4	A set which has no elements is called	Subset	✓Empty set	Singleton set	Super set
5	The set $\{x x \in W \land x \le 101\}$ is	Infinite set	Subset	Null set	✓ Finite set
6	The set having only one element is called	Null set	Power set	✓ Singleton set	Subset
7	Power set of an empty set is	φ	{a}	$\{\phi,\{a\}\}$	√{φ}
8	The number of elements in power set $\{1,2,3\}$ is	4	6	√8	9
9	If $A \subseteq B$, then $A \cup B$ us equal to	A	✓B	φ	None of these
10	If $A \subseteq B$, then $A \cap B$ us equal to	√A	В	φ	None of these
11	If $A \subseteq B$, then $A - B$ us equal to	Α	В	√ <i>φ</i>	B-A
12	$(A \cup B) \cup C$ is equal to	$A \cap (B \cup C)$	(A∪B)∩C	✓A∪(B∪C)	$A \cap (B \cup C)$
13	$A \cup (B \cap C)$ is equal to	$\checkmark_{(A \cup B) \cap (A \cup C)}$	$(A \cap B) \cup (A \cap C)$	$A \cap (B \cup C)$	$A \cup (B \cup C)$
14	If A and B are disjoint sets, then $A \cup B$ is equal to	A	В	φ	$\checkmark B \cup A$
15	If the number of elements in set A is 3 and the number of elements in set B is 4, then the number of elements in $A \times B$ is equal to	3	4	7	√12
16	If the number of elements in set A is 2 and the number of elements in set B is 3, then the number of binary relation in $A \times B$ is equal to	2 ³	√2 ⁶	2 ⁸	2 ²
17	The domain of $R = \{(0,2), (2,3), (3,3), (3,4)\}$ is	{0,3,4}	√{0,2,3}	{0,2,4}	{2,3,4}
18	The range of $R = \{(1,3), (2,2), (3,1), (4,4)\}$ is	{1,2,4}	{3,2,4}	√{1,2,3,4}	{1.3.4}
19	Point $(-1,4)$ lies in quadrant	I	✓II	III	IV
20	The relation {(1,2), (2,3), (3,3), (3,4)} is	Onto function	Into function	√Not a function	One-one function

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798

Website: https://hiraacademy.online/

Page 1 of 1