1	If α, β are the roots of equation	<u>5</u>	$\sqrt{-\frac{5}{3}}$	3	_ 2
	$3x^2 + 5x - 2 = 0$, then $\alpha + \beta$ is	3	3	5	3
2	If α, β are the roots of equation	<u>7</u>	$-\frac{1}{2}$	$\sqrt{\frac{4}{7}}$	$-\frac{4}{-}$
	$7x^2 - x + 4 = 0$, then $\alpha\beta$ is	4	$-\frac{7}{7}$	7	$-\frac{7}{7}$
3	The roots of the equation $4x^2 - 5x + 2 = 0$ are	Irrational	√Imaginary	Rational	None of these
4	The cube roots of -1 are	$-1, -\omega, -\omega^2$	$-1, \omega, -\omega^2$	$-1, -\omega, \omega^2$	$1, -\omega, -\omega$
5	The sum of cube roots of unity is	√0	1	-1	3
6	The product of cube roots of unity is	0	√ 1	-1	3
7	If $b^2 - 4ac < 0$, then the roots of $ax^2 + bx + c = 0$ are	Irrational	Rational	√Imaginary/ Unreal	None of these
8	If $b^2 - 4ac > 0$, but not a perfect square then the roots of $ax^2 + bx + c = 0$ are	√ Irrational	Rational	lmaginary	None of these
9	$\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to	$\frac{1}{\alpha}$	$\frac{1}{\alpha} - \frac{1}{\beta}$	$\frac{\alpha-\beta}{\alpha\beta}$	$\sqrt{\frac{\alpha+\beta}{\alpha\beta}}$
10	$\alpha^2 + \beta^2$ is equal to	$\alpha^2 - \beta^2$	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$\alpha + \beta$	$\sqrt{(\alpha+b)^2-2a}$
11	The square roots of unity are	√1, −1	1, ω	1, -ω	ω, ω^2
12	The roosts of equation $4x^2 - 4x + 1 = 0$ are	√real, equal	real, unequal	imaginary	irrational
13	If α, β are roots of equation $px^2 + qx + r = 0$, then the sum of roots 2α and 2β is	$-\frac{q}{p}$	$\frac{r}{p}$	$\sqrt{-\frac{2q}{p}}$	$-\frac{q}{2p}$
14	If α, β are roots of equation $x^2 - x - 1 = 0$, then the product of roots 2α and 2β is	-2	2	4	√-4
15	The nature of the roots of equation is determined by	Sum of roots	Product of roots	Synthetic division	√Discrimina
	The discriminant of $ax^2 + bx + c = 0$ is	$-b^{2}-4ac$	$-b^{2} + 4ac$	$b^{2} + 4ac$	$\sqrt{b^2-4a}$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798
Website: https://hiraacademy.online/
Page 1 of 1